American Journal of Electrical and Electronic Engineering. 2017, 5(3), 108-119
DOI: 10.12691/AJEEE-5-3-6
Original Research

Inter-satellites Optical Communication Systems for Defense

João Miguel Trindade1, João Paulo N. Torres2, , António Baptista3 and Mª João Martins1

1Academia Militar, Lisboa, Portugal

2Departamento de Engenharia Electrotécnica e de Computadores, Instituto de Telecomunicações. Instituto Superior Técnico da Universidade de Lisboa, Lisboa, Portugal

3Departamento de Engenharia Electrotécnica e de Computadores, Instituto Superior Técnico da Universidade de Lisboa, Lisboa, Portugal

Pub. Date: July 01, 2017

Cite this paper

João Miguel Trindade, João Paulo N. Torres, António Baptista and Mª João Martins. Inter-satellites Optical Communication Systems for Defense. American Journal of Electrical and Electronic Engineering. 2017; 5(3):108-119. doi: 10.12691/AJEEE-5-3-6

Abstract

Satellite communication systems are increasingly more used by the society in many applications, and its development is a high priority for the scientific community. The need for increasing bandwidth to satisfy the users’ needs, makes inter-satellites Free Space Optics (FSO) communication preferred instead of traditional radio frequency links. The inter-satellites communication links with high bit rates and low power is a determining factor in the performance of these systems. As such, communications occur over long distances and high altitude orbits, which requires optical sources with highly collimated and coherent beams in order to ensure a better link between the transmitter and the receiver with low emission power. This paper involves the development of two experimental blocks for implementing an inter-satellite optical communication system using a semiconductor laser type. It aims at the definition and analysis of the elements of the two circuits, at the transmitter subsystem and includes the design for the production of printed circuit boards (PCB). Moreover, experimental tests were performed to validate the results obtained in the simulations.

Keywords

satellites, optical communications, transmitter subsystem, semiconductor laser

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  H. Kaushal, G. Kaddoum, and C. Engineering, “Free Space Optical Communication: Challenges and Mitigation Techniques,” pp. 1-28, 2015.
 
[2]  P. Major Costa, “A depência na tecnologia espacial em operações militares,” p. 83, 2013.
 
[3]  F. S. Ujager, S. M. H. Zaidi, and U. Younis, “A review of semiconductor lasers for optical communications,” High-Capacity Opt. Networks Enabling Technol. (HONET), 2010, no. Cw Dm, pp. 107-111, 2010.
 
[4]  S. Spießberger, “Compact Semiconductor-Based Laser Sources with Narrow Linewidth and High Output Power,” p. 130, 2012.
 
[5]  J. Oscarsson, “Simulation of Optical Communication for Formation Flying Spacecraft,” no. April, p. 95, 2008.
 
[6]  T. Tolker-Nielsen and J.-C. Guillen, “SILEX: The First European Optical Communication Terminal in Orbit,” ESA Bull., vol. 96, no. november, 1998.
 
[7]  “Satellite laser link,” Airbus Defence and Space, 2011. [Online]. Available: http://www.space-airbusds.com/en/news2/satellite-laser-link.html. [Accessed: 05-Aug-2016].
 
[8]  “First image download over new gigabit laser connection in space,” Airbus Defence and Space, 2014. [Online]. Available: https://airbusdefenceandspace.com/newsroom/news-and-features/first-image-download-over-new-gigabit-laser-connection-in-space/. [Accessed: 05-Aug-2016].
 
[9]  D. Stillman, “What is a Satellite?,” 2014. [Online]. Available: http://www.nasa.gov/audience/forstudents/5-8/features/nasa-knows/what-is-a-satellite-58.html. [Accessed: 06-Aug-2016].
 
[10]  H. Riebeek, “Catalog of Earth Satellite Orbits,” NASA - Earth Observatory, 2009. [Online]. Available: http://earthobservatory.nasa.gov/Features/OrbitsCatalog/. [Accessed: 06-Aug-2016].
 
[11]  G. Brown and W. Harris, “Types of Satellites,” How Satellites Work. [Online]. Available: http://science.howstuffworks.com/satellite7.htm. [Accessed: 06-Aug-2016].
 
[12]  C. Tenente-Coronel Mendes Dias, “O Espaço na Guerra Futura,” Rev. Mil., vol. 2453/2454, pp. 1-39, 2006.
 
[13]  H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radio Eng., vol. 19, no. 2, pp. 203-212, 2010.
 
[14]  M. A. Khalighi, M. Uysal, C. Marseille, and E. Engineering, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutorials, vol. 16, pp. 2231-258, 2014.
 
[15]  P. Singal, S. Rai, R. Punia, and D. Kashyap, “Comparison of Different Transmitters Using 1550nm and 10000nm in FSO Communication Systems,” Int. J. Comput. Sci. Inf. Te-hnol., vol. 7, no. 3, pp. 107-113, 2015.
 
[16]  J. Mulet, “SEMICONDUCTOR LASER DYNAMICS. Compound- cavity, polarization and transverse modes,” no. December, p. 248, 2002.
 
[17]  “The biography of Theodore Maiman,” Laser Inventor- Creator of the World’s first laser. [Online]. Available: http://www.laserinventor.com/bio.html. [Accessed: 07-Aug-2016].
 
[18]  S. B. Alves, “Dinâmica em frequência de laser semicondutor sob realimentação ótica ortogonal filtrada,” Federal da Paraíba, 2012.
 
[19]  S. W. Koch, Weng W.; Chow, Semiconductor-Laser Fundamentals, Physics of the Gain Materials. Berlin: Springer, 1999.
 
[20]  G. S. Oliveira, “Formatos de Modulação de uma Portadora Óptica com Detecção Direta,” pp. 1-89, 2011.
 
[21]  E. Sackinger, “Optical Transmitters,” Broadband Circuits Opt. Fiber Commun., vol. 1, pp. 233-257, 2005.
 
[22]  J. O. Carroll, “Novel Optical Transmitters for High Speed Optical Networks,” Dublin City University, 2013.