American Journal of Electrical and Electronic Engineering. 2015, 3(2), 29-36
DOI: 10.12691/AJEEE-3-2-2
Original Research

Simple Mathematical Model for Ferromagnetic Core Inductance and Experimental Validation

B. Nana1, , S. B. Yamgoué1, R. Tchitnga2 and P. Woafo3

1Department of Physics, Higher Teacher Training College, University of Bamenda, PO Box 39 Bamenda, Cameroon

2Laboratory of Electronics and Signal Processing, Faculty of Science, University of Dschang, PO Box 67 Dschang Cameroon

3Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaounde I, PO Box 812 Yaounde, Cameroon

Pub. Date: April 01, 2015

Cite this paper

B. Nana, S. B. Yamgoué, R. Tchitnga and P. Woafo. Simple Mathematical Model for Ferromagnetic Core Inductance and Experimental Validation. American Journal of Electrical and Electronic Engineering. 2015; 3(2):29-36. doi: 10.12691/AJEEE-3-2-2

Abstract

In determining the properties and inductance of ferromagnetic core inductor, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper, we report a new mathematical model based on the experimental data of hysteresis for ferromagnetic core inductor. The proposed model can restore the hysteresis curve with a little RMS error. We used the model to determine analytically the expression of the current in a RL series circuit forced by an alternating source. A good agreement is found between our theoretical and experimental results.

Keywords

nonlinear, inductance, ferromagnetic, core, hysteresis

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Visintin, A. Differential Models of Hysteresis, Applied Mathematical Science, Springer-Verlag, New York, 1994.
 
[2]  Górecki, K. and Zarobski J, “Modelling of Inductors and Transformers in SPICE,” Elektronika - konstrukcje, technologie, zastosowania, Not-Sigma, 1(2). 40-43. 2004.
 
[3]  Górecki, K, “SPICE-aided Modelling of Coils with the Ferrite Core with Selfheating Taken into Account,” Kwartalnik Elektroniki i Telekomunikacji, 3(5). 389-404. 2003.
 
[4]  Chiesa, N. and Hoidalen, H.K, “Modeling of nonlinear and hysteretic iron-core inductors in ATP,” in EEUGMeeting 2007, European EMTP-ATP Conference, Leon, Spania, Sep. 2007.
 
[5]  Anderson, J.C, Magnetism and Magnetic Materials, Champen and Hall Ltd. London, 1968.
 
[6]  Chua, L.O. and Stromsmoe, K.A, “Lumped-Circuit Models for Nonlinear Inductors Exhibiting Hysteresis Loops,” IEEE Transactions on Circuit Theory, 17(4). 564-574. Nov. 1970.
 
[7]  Carnevale, D., Nicosia, S. and Zaccarian, L, “Generalized Constructive Model of Hysteresis,” IEEE Transactions on Magnetics, 42(12). 3809-3817. Dec. 2006.
 
[8]  Chua, L.O. and Bass, S.C, “A Generalized Hysteresis Model,” IEEE Transactions on Circuit Theory, 19(1). 36-48. Jan. 1972.
 
[9]  Chiesa, N., Avendano, A.H., Hoidalen, K., Mork, B.A., D. Ishchenko, D. and Kunze, A.P, “On the ringdown transient of transformers,” in IPST’07 - International Conference on Power System Transients, Lion, France, (229). 4-7. Jun. 2007.
 
[10]  Jiles, D.C. and Atherton D.L, “Ferromagnetic Hysteresis,” IEEE Transactions on Magn. 19(5). 2183-2185. Sep. 1983.
 
[11]  Fiorillo F. and Dupré L.R, “Comprehensive Model of Magnetization Curve, Hysteresis Loops, and Losses in Any Direction in Grain-Oriented Fe-Si,” IEEE Transactions on Magn, 38(3). 1467-1476. Jun. 2002.
 
[12]  Carnevale D., Nicosia S. and Zaccarian L, “Generalized Constructive Model of Hysteresis,” IEEE Transactions on Magn, 42(12). 3809-3817. Dec. 2006.
 
[13]  Brachtendorf H.G., Eck C. and Laur R, “Macromodeling of Hysteresis Phenomena with SPICE,” IEEE Transactions on Circuits and Systems – II: Analog and Digital Signal Processing, 44(5). 378-388. May. 1997.
 
[14]  Chan J.H., Vladimirescu A., Gao X.C., Liebmann P. and Valainis J, “Nonlinear Transformer Model for Circuit Simulation,” IEEE Transactions on Computer-Aided Design, 10(4) 476-482. Apr. 1991.
 
[15]  Germay, N., Maestero, S. and Vroman, J, “Review of Ferroresonance Phenomena in High Voltage Power Systems and Presentation of a Voltage Transformer Model for Predetermining Them”, CIGRE, 33-18.1972.
 
[16]  Nakra, H.L. and Barton, T.H, “Three Phase Transformer Transients,” IEEE Transactions on Power Apparatus and Systems, 93(1). 1810-1819. Nov./Dec. 1974.
 
[17]  De Leon, F. and Semlyn, A, “A Simple Representation of Dynamic Hysteresis Losses in Power Transformer,” IEEE Transactions On Power Delivery, 10(1). 315-321. Jan. 1995.
 
[18]  Wright, A. and Carneiro, S, “Analysis of Circuits Containing Components with Cores of Ferromagnetic Material,” IEE Proceedings, 121(12). 1579-1581. Dec. 1974.
 
[19]  Greene, J.D. and Grass, A.C. “Nonlinear Modeling of Transformer,” IEEE Transactions on Industry Applications, 24(3). 434-438. Jun. 1988.
 
[20]  Yamada, S., Besho K. and Lu, L, “Harmonic balance finite element method applied to the nonlinear AC magnetic analysis,” IEEE Trans. On Magn. 25(6). 2971-2973. Jul. 1989.
 
[21]  Huang, S.R., Chung, S.C., Chen B.N. and Chen, Y.H, “A Harmonic Model for the Nonlinearities of Single-Phase Transformer with Describing Function,” IEEE Transaction On Power Delivery, 18(3). 815-820. Jul. 2003.
 
[22]  Radmanesh, H., Abassi, A. and Rostami, M, Analysis of Ferroresonance Phenomena in Power Transformers Including Neutral Resistance Effect, IEEE conference, Georgia, USA, 2009.
 
[23]  Gianduzzo, J.C. Ygorra, S. and Lasne. L, « La ferrorésonnance, experimentation, et modélisation non linéaire, » Université de Bordeaux 1, Centre de Ressource en EEA. http://ferroresonance.free.fr.
 
[24]  Salas, R.A. and Pleite, J, “Simple Procedure to Compute the Inductance of a Toroidal Ferrite Core from the Linear to the Saturation Regions,” Materials, 6(3). 2452-2463. Jun. 2013.